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This paper presents a general method for reaction-path calculations with redundant curvilinear internal
coordinates. Following Pulay and Fogarasi, the generalized inverse of the WilsonG matrix is used to re-
move the redundancy of the curvilinear internal coordinates. An illustrative application to HBr+ HCCHf
H2CCHBr is presented, and the results with the new algorithm are compared to calculations with rectilinear
coordinates.

1. Introduction

Expressing the potential energy for a chemical reaction in
terms of a harmonic expansion around a reaction path has a
long history and has established itself as an important practical
approach in theoretical and computational dynamics.1-13 Our
own interest in this approach has centered on its use for
variational transition state theory and multidmensional tunneling
calculations.3,6,10,11,14-17 It is known that the harmonic frequen-
cies depend on the coordinate system, in particular, on the
definition of the reaction coordinate for points off the reaction
path.18,19 (The frequencies are actually ambiguous not only
along reaction paths but any time that the gradient does not
vanish, for example when ab initio force constants are evaluated
at an experimental geometry.20,21) We have established that
curvilinear internal coordinates provide more physical values
for the frequencies along reaction paths than are obtained with
rectilinear coordinates.19,22-24 (Rectilinear coordinates are any
coordinates that can be written as linear combinations of atomic
Cartesians, and curvilinear coordinates are any coordinates that
cannot so be written.) It has also been pointed out that valence
coordinates provide a more rapidly convergent series representa-
tion of the anharmonicity than rectilinear coordinates and that
they minimize coupling terms.10,25,26 (Valence coordinates31-33

are the most useful curvilinear internal coordinates; they consist
of A-B bond stretches, bending angles between two bonds
sharing an atom, e.g., A-B and B-C, and torsions. Proper
torsions are dihedral angles between A-B-C and B-C-D
planes where an A-B-C-D bonding pattern exists. In some
molecules, one needs improper torsions which are more general
dihedral angles.) Other workers27-30 have also found curvilinear
internal coordinates useful for reaction-path calculations, al-
though most work reported to date is based on rectilinear
coordinates.
In recent papers, we have presented a general formalism for

using nonredundant valence coordinates for calculating reaction-
path frequencies.22-24 In the present paper we turn to the
question of redundant valence coordinates. Redundant valence
coordinates arise naturally because the number of valence
coordinates for systems with five or more atoms that do not
constitute a simple chain usually exceeds 3N - 6, whereN is

the number of atoms. Since only 3N - 6 coordinates are
required to span the vibrational degrees of freedom, the valence
coordinates are not unique in such cases. For typical cases in
organic chemistry the number of redundancies equals the
number of carbon atoms with four bonds (called 4-fold star
centers) plus at least one redundancy for each ring. For
hypervalent systems and transition states there may be additional
redundancies. Usually, one can obtain correct results by
arbitrarily omitting one bend coordinate at each 4-fold star center
and for each ring; however, there are many reasons why it is
preferable to work directly in redundant coordinates. For
example,
(1) Omitting one bend coordinate arbitrarily destroys the

symmetry in high-symmetry situations.
(2) In complicated cases, it is not always clear which subsets

of 3N - 6 coordinates properly span the vibrational space and
which do not.
(3) Redundant coordinates may lead to force fields that are

easier to interpolate or more transferable.
(4) For calculations along a reaction path, including all the

valence coordinates necessary for a complete description of both
reactants and products may lead to redundancies at the transition
state. Some chemical reactions (e.g., HBr+ HCCH f H2-
CCHBr) simply cannot be described correctly all along the
reaction path with a single set of nonredundant valence
coordinates.
Redundant valence coordinates have been used at stationary

points since the early days of vibrational spectroscopy,32 and,
more recently, general and fully automatic procedures for using
redundant coordinates at stationary points and in optimization
algorithms have appeared in the literature.34,35 The present paper
gives a fully automatic general algorithm for using redundant
curvilinear coordinates to calculate frequencies along a reaction
path. Section 2 presents the theory, and section 3 presents an
application to the reaction HBr+ C2H2.

2. Theory

2.1. General. Our algorithm is a combination of the
nonredundant reaction-path formulation of Jackels et al.22 and
the redundant-coordinate stationary-point formalism of Pulay
and Fogarasi.34X Abstract published inAdVance ACS Abstracts,December 1, 1997.
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Consider a system withN atoms, and letV denote the poten-
tial energy. Following our previous notation,22 the potential
energy can be expressed as a Taylor expansion in terms of the
displacement of atomic Cartesian coordinatesRi from the
reference structure

or in terms of displacements of curvilinear internal coordinates
qi from the reference structure

whereF is the number of internal coordinates (g3N - 5 for
linear molecules, andg3N - 6 for general polyatomic
molecules). A curvilinear coordinate can be written as a power
series in the Cartesian displacement coordinates:

in which Bij is an element of the WilsonB matrix32

and Cjk
i is an element of the tensorCi representing the

quadratic term

Note thatCi is sometimes36 calledBi.
2.2. Transformation of Gradient Vector and Force

Constant Matrix. The Cartesian gradient vectorG and force-
constant matrixF are given in terms of their curvilinear
counterpartsg and f by

As before, the generalized inverse of the WilsonB matrix
is21,22,34,37,38

where

I is the unit matrix, andu is a diagonal matrix with the
reciprocals of the atomic masses on the diagonal. (Any
symmetric positive definite matrix would be suitable at this
stage of the development, but in order to identifyBuBT with
G in the next subsection and to provide a formalism that
correctly transforms vector properties such as dipole moments
and laboratory-frame reaction-path curvature components we

require this more specific form foru.21,39) With these defini-
tions

2.3. The Vibrational Frequencies. In the Wilson GF
matrix method,32,40

whereL is the matrix of the generalized normal mode eigen-
vectors,Λ is the eigenvalue matrix,G is BuBT, andF is the
force constant matrix. To compute the vibrational frequencies
in the subspace orthogonal to a curvilinear reaction coordinate,
F is the projected Hessianf P, which is given in curvilinear
coordinates by22

wherep(s) is the nonorthogonal coordinate projection operator
given by

The vibrational frequencies are given by

2.4. Transformation of Vibrational Eigenvectors. The
eigenvectors obtained from (12) are not normalized. The
normalized eigenvector matrix is defined as22,32,40

where

The matrix of Cartesian displacement normal-mode eigenvectors
is22

The elements of the normalized generalized normal-mode
direction vectors in mass-scaled Cartesian displacement vectors,
as needed for the multidimensional tunneling calculations,12,14-17

are given by

Following Pulay and Fogarasi34 the generalized inverseG - of
the G matrix required for eq 19 is obtained by solving the
following eigenvalue equation.

whereK consists of the eigenvectors ofG corresponding to
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nonzero eigenvalues (denoted byG), and theK ′ consists of the
redundant eigenvectors. This yields

TheG - matrix is also used to calculate the matrixA required
for eqs 10 and 11. In particular, it follows from the development
of Pulay and Fogarasi34 that

2.5. Practical Procedures. With the theoretical framework
given by eqs 1-23, the calculation at a given point along the
reaction path proceeds as follows:
1. Calculate theBmatrix andCi tensor using formulas given

elsewhere.22-24,32,36 (See also the treatment of Miller,41 although
we have not used his formulas.)
2. CalculateG by

G - by eq 22 andA by eq 23.
3. Calculate the gradient and Hessian in redundant coordi-

nates by eqs 10 and 11.
4. Project the gradient and force constants from redundant

internal to nonredundant internal coordinates, with the projector
P.

Project out the reaction coordinate by pluggingg̃ andf̃ into eqs
13 and 14. Obtain the frequencies from eqs 12 and 15.
5. Transform the eigenvectors to the mass-scaled Cartesian

coordinate system by eqs 16-20. The inverse of the eigenvector
matrix required for eq 18 is obtained by singular value
decomposition using a standard algorithm.42

6. Remove the zero eigenvalues and the corresponding
eigenvectors and store the remaining eigenvalues and eigen-
vectors in canonical order (largest to smallest eigenvalue). As
a check, we calculate the scalar products of the eigenvectors to
confirm that they are orthonormal.

3. Calculations

For several reactions we checked that the new algorithm using
redundant coordinates gives frequencies identical with the
previous22-24 nonredundant-coordinate algorithm. These test
cases included H+ H2, H + O2, H + CH4, H + N2H2, NH2 +
PH3, NH2 + CH4, and NH2 + SiH4. The first three examples
were carried out with potentials given elsewhere,43-45 and the
last three were calculated by direct dynamics46,47 using the
AM148 and MNDO49 methods. In all cases, the results
computed with redundant and nonredundant valence coordinates
agree with each other, although they disagree with the results
obtained with rectilinear coordinates, which are less physical.
Consider the reaction NH2 + CH4 as an example. In this

caseN ) 8 and 3N - 6 ) 18. However, there are 7 stretches,
10 bends, and 2 torsions. (Usually it is not necessary to include
an A-B-C-E torsion if A-B-C-D is already included, and
it is this fact that reduces the number of torsions from 5 to 2.)
Dropping one H-C-H bend of the spectator methyl group
reducesF to 18 in a physically reasonable way (since it is the

4-fold star center that generated the redundancy in the first
place), and this calculation agrees with using all 19 internal
coordinates. However, dropping either torsion gives smaller
frequencies or even zero for low-frequency modes, as expected
since the torsional modes are not the modes that generate the
redundancy.
Next we considered a more complicated case, namely HBr

+ HCCHf H2CCHBr. This system hasN) 6 and 3N- 6)
12. The number of each type of valence coordinate at various
points along the reaction path is summarized in Table 1.
Because our goal is to illustrate the calculation of physically
meaningful results for a given potential energy function, we
did not attempt to obtain a quantitatively accurate potential
energy function, but rather we employed direct dynamics
calculations based on AM1. AM1 yields a classical barrier
height of 51.8 kcal/mol and a classical exoergicity of-26.3
kcal/mol, in qualitative agreement with previous modeling,50

which used a potential surface with a barrier height of 48.2 kcal/
mol and a classical exoergicity of-33.7 kcal/mol.
In Figure 1 we specify a labeling scheme for the atoms at an

arbitrary point along the reaction path, and in Table 2 we list
three possible sets of redundant coordinates. Using any of these
sets gives the same frequencies along the reaction path, and
furthermore the frequencies tend to the correct values for
reactants and products (the reactant and product values are
unambiguous since the gradient vanishes). However, any
attempt to further reduce the number of bends or torsions as
compared to sets B or C results in incorrect frequencies. We
conclude that no set of nonredundant valence coordinates is
sufficient.51 Furthermore, the use of rectilinear coordinates
results in an artifactual imaginary frequency (which is a
frequently encountered occurrence for rectilinear coordinates).
The frequencies obtained with rectilinear and redundant curvi-
linear coordinates (set A, B, or C) are compared in Table 3. In
this table,sdenotes the value of the reaction coordinate, which

G - ) (K K ′)(Γ-1 0
0 0)(KT

(K ′)T ) (22)

A ) uBTG - (23)

G ) BuBT (24)

P) G G - (25)

f̃ ) PfP (26)

g̃) Pg (27)

TABLE 1: Valence Coordinates for HBr + HCCH f
H2CCHBr

reaction path

reactant
before ring
formation

after ring
formation product

stretches 4 5 6 6
bends, nonlinear 0 6 8 8
bends, linear 4a 0 0 0
torsions 0 1 6 4
total 8 12 20 18
vibrational degrees
of freedom

8b 12c 12c 12c

a Two doubly degenerate linear beads.b 3NHBr - 5 + 3NHCCH - 5.
c 3Ntotal - 6.

Figure 1. Atom numbering scheme.
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is defined to be zero at the saddle point. Nonzero values ofs
may be interpreted as the signed distance in amu1/2 a0 along
the minimum energy path in mass-weighted coordinates32 or
as the signed distance in a0 along the minimum energy path in
mass-scaled coordinates14,15where all coordinates are scaled to
a reduced mass of 1 amu. Note that for nonstationary points
along the reaction path, there are only 11 frequencies, not 12,
because the reaction coordinate is projected out.
The nonphysical imaginary frequency obtained with recti-

linear coordinates shows up in Table 3 in mode 11 ats) -1.0.
We also see a particularly large deviation between rectilinear

and curvilinear coordinates for mode 10 ats ) +1.0. If we
identify the modes diabatically, this is actually the same mode
as mode 10 ats) -1.0. This is illustrated in Figure 2 which
shows modes 9, 10, and 11 for-1.5 e s e 1.5. The high-
frequency modes show smaller percentage errors, but the
absolute errors can be very significant. For example, mode 3
shows deviations between the two coordinate systems of 49
cm-1 at s) -1.0 and 41 cm-1 at s) +1.0; these would affect
the local zero-point energy by 0.06-0.07 kcal/mol. And mode
4 shows deviations between the two coordinate systems of 47
cm-1 at s ) -0.5 and 52 cm-1 at s ) 0.5 in Table 3. The

TABLE 2: Sets of Valence Coordinates for H2CCHBr

set type no. specifications

A stretches 6 1-2 1-3 1-5 2-4 2-6 5-6
bends 6 12-6 1-5-6 2-1-5 2-6-5 3-1-5 4-2-6
torsions 6 1-2-6-5 1-5-6-2 2-1-5-6 3-1-5-6 4-2-6-5 5-1-2-6
total 18

B stretches 6 same as A
bends 6 same as A
torsions 3 3-1-5-6 4-2-6-5 5-1-2-6
total 15

C stretches 6 same as A
bends 6 same as A
torsions 3 1-5-6-2 3-1-5-6 4-2-6-5
total 15

TABLE 3: Frequencies along the Reaction Path for HBr+ HCCH f H2CCHBr

mode reactant s) -1.0 s) -0.5 s) 0.0 s) 0.5 s) 1.0 product

1 3475a 3447 3410 3370 3346 3322 3205
2 3422 3387 3362 3336 3310 3261 3172
3 2438 2344, 2295 2068, 2048 1941 1965, 1944 2832, 2791 3151
4 2182 2111, 2108 1865, 1818 1660 1784, 1836 1818, 1824 1810
5 928 933, 925 935, 940 939 1129, 1117 1407, 1404 1397
6 928 926, 903 921, 887 903 967, 1075 1015, 1052 1220
7 805 831, 827 828, 842 863 946, 953 992, 1015 1064
8 804 828, 795 826, 793 804 790, 803 800, 837 1019
9 412, 402 369, 372 629 707, 614 739, 741 939
10 317, 312 348, 356 447 595, 574 678, 464 625
11 280, 230i 332, 317 334 405, 387 398, 391 560
12 2507i 345

aWhen a single value is given, it indicates that we obtain the same value using either redundant valence coordinates or rectilinear coordinates.
When two values are given, the first value is obtained with redundant valence coordinates and the second value with rectilinear coordinates.

Figure 2. Frequencies of modes 9, 10, and 11 as calculated with
redundant curvilinear coordinates (dashed curves) and rectilinear
coordinates (solid curves). Imaginary frequencies are plotted as negative
numbers for illustrative purposes. The slight oscillatory noise in the
curves is due to the numerical nature of the reaction-path calculation.

TABLE 4: Rate Constants (cm3 molecule-1 s-1) for HBr +
HCCH f H2CCHBr

T (K) CVT/ZCT CVT/LCT CVT/SCT

Rectilinear
250 1.5(-50) 2.1(-48) 8.2(-48)
300 2.6(-45) 8.3(-45) 3.9(-44)
400 6.1(-39) 7.0(-39) 1.8(-38)
1000 1.2(-23) 1.2(-23) 1.2(-23)
2400 1.3(-16) 1.3(-16) 1.3(-16)

Curvilinear
250 8.5(-50) 1.2(-48) 4.3(-48)
300 1.8(-45) 5.5(-45) 2.4(-44)
400 5.4(-39) 6.2(-39) 1.5(-38)
1000 1.2(-23) 1.2(-23) 1.2(-23)
2400 1.2(-16) 1.2(-16) 1.2(-16)

Curvilinear÷ Rectilineara

250 0.57 0.55 0.53
300 0.69 0.66 0.62
400 0.89 0.88 0.82
1000 0.97 0.97 0.97
2400 0.94 0.94 0.94

aRatios were calculated before rounding the rate constants to two
significant figures.
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deviations in all the modes grow rapidly as one leavess ) 0;
in particular dωi/ds|s)0 is not the same in the two coordinate
systems.
Table 4 gives thermal rate constants using canonical varia-

tional theory6,14,15 (CVT) with three different methods for the
tunneling contribution: zero-curvature tunneling3,14,15(ZCT, also
called MEPSAG), small-curvature tunneling17,52 (SCT, also
called CD-SCSAG), and large-curvature tunneling15-17,53,54

(LCT, also called LCG3). The rates are small because the
reaction barrier is high, 51.8 kcal/mol, for the present example.
The most accurate results are expected to be obtained by the
microcanonical optimized multidimensional tunneling54 (µOMT)
approximation, which selects the greater of the SCT and LCT
tunneling results at each energy. For the present problem, the
µOMT results are the same as the SCT results. The table shows
that the calculated rate constants are smaller when using
curvilinear coordinates. This occurs because the zero-point-
corrected barrier profile is wider in curvilinear coordinates,
especially for negatives (i.e., on the reactant side of the saddle
point).

4. Concluding Remarks

One essential element of calculating the reaction rates with
variational transition state theory (VTST) or other reaction-path-
based methods is the evaluation of the vibrational frequencies
along the reaction path. Our previous studies have shown that
using the physically intuitive valence internal coordinates leads
to more physical generalized normal-mode frequencies. How-
ever, in order to maintain the symmetry of the system studied,
permit automatic generation of coordinates, or treat a system
along a reaction path with a single set of coordinates, the number
of valence coordinates will often be greater than the degrees of
freedom of the system. Using different subsets of the valence
internal coordinates will sometimes result in different frequen-
cies. The use of redundant valence coordinates alleviates these
problems. To permit automatic calculations in the presence of
redundancies, the algorithm based on a generalized inverse of
theG matrix, proposed by Pulay and Fogarasi,34 is generalized
to treat reaction-path frequencies at locations where the gradient
is nonzero, using the formalism of Jackels et al.22 The resulting
algorithm is stable and is illustrated for the reaction HBr+
HCCHf H2CCHBr. The redundant-valence-coordinate algo-
rithm has been included in versions 7.4 of the computer
programs POLYRATE,17,55,56MORATE,53,57,58 and GAUSS-
RATE,59 which are available to interested researchers through
the World Wide Web.
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